Unavoidable trees and forests in graphs
نویسندگان
چکیده
Classic results from extremal graph theory state that if certain graphs are made large enough, unavoidable substructures appear. Here we will cover this type of problem for specific graphs when these substructures are certain trees or forests. After giving a summary on related results, the following two extremal main problems are presented: For a given family of same-order trees including the star and the path, how large can a tree be that contains none of them as subtree? We show that this value depends heavily on the number of spiders in the family: For a family of k-vertex trees consisting of p spiders and a constant number of non-spiders, we construct a tree of size 2 log p−1 k) containing no trees from this family, and show that all asymptotically larger trees do contain some of them. Here logp−1 denotes the (p− 1)-times-iterated logarithm. For a balanced black-white-coloring of the complete bipartite graph Kn,n, we examine the size of the largest fork forest contained as subgraph. A fork is a path of length 2 consisting of a black and a white edge. It is shown that there are at least (1− 1 √ 2 )n vertexdisjoint forks all centered in the same partite set, and this is best possible, confirming a conjecture by Tverentina et al. An efficient algorithm finding the largest number is presented. Zusammenfassung Bekannte Resultate aus der extremalen Graphentheorie besagen, dass wenn bestimmte Graphen groß genug gemacht werden, unvermeidbare Strukturen auftreten. Hier werden wir dieses Problem für spezielle Graphen betrachten, wenn die Strukturen bestimmte Bäume oder Wälder sind. Nach einem Überblick über verwandte Resultate werden die folgenden zwei Hauptprobleme präsentiert: Für eine gegebene Familie von Bäumen gleicher Größe, die Stern und Pfad beinhaltet, wie groß kann ein Baum sein, der keinen Baum aus der Familie als Unterbaum enthält? Wir zeigen, dass dieser Wert stark von der Anzahl der Spinnen in der Familie abhängt: Für eine Familie von k-Knoten–Bäumen, bestehend aus p Spinnen und einer konstanten Anzahl an Nicht–Spinnen, konstruieren wir einen Baum der Größe 2 log p−1 , der keinen Baum von der Familie enthält, und zeigen, dass alle asymptotisch größeren Bäume einen davon enthalten müssen. Hier ist logp−1 der (p− 1)-Mal iterierte Logarithmus. Für eine balancierte Schwarz–Weiß–Färbung des vollständigen bipartiten Graphen Kn,n untersuchen wir die Größe des größten Gabelwaldes, der als Untergraph enthalten ist. Eine Gabel ist ein Pfad der Länge 2 bstehend aus einer schwarzen und einer weißen Kante. Es wird gezeigt, dass es mindestens (1 − 1 √ 2 )n knoten-disjunkte Gabeln, die alle in der gleichen Hälfte des bipartiten Graphen zentriert sind, gibt, und dass dies bestmöglich ist, was eine Vermutung von Tverentina et al. bestätigt. Ein effizienter Algorithmus, der die größte Anzahl findet, wird vorgestellt. Acknowledgements I would like to express my deepest gratitude to my advisor from the faculty of mathematics, Prof. Maria Axenovich, for giving me perspective and guiding me into the intricacies of graph theory, for her advice on my research and interesting discussions, for being available for my inquiries even on short notice, her advice and assistance for my future endeavors, and her overall kindness. I would furthermore like to profusely thank my advisor from the faculty of computer science, Dr. Ignaz Rutter, for his support and advice on my research and for insightful discussions, and Prof. Dorothea Wagner for giving me the chance to write this thesis for computer science at her institute and agreeing to review my thesis. For our joint research work I would like to thank again Prof. Maria Axenovich, Dr. Ignaz Rutter and Dr. Marcus Krug, and I would also like to thank Olga Tverentina for making us aware of the problem about fork forests. Finally, I would like to say thanks to my colleagues from the graph theory seminar for their useful feedback on my presentation, especially Daniel Hoske for helping with proofreading.
منابع مشابه
Changes in leaf nutrients of healthy and withered trees in the forests of Garan (in Marivan) and Dezlei (in Sarvabad) in Kurdistan province
Most macronutrient accumulation occurs in tree leaves and there is a strong relationship between leaf nutrient change and tree decline. The aim of this study was to investigate the changes in leaf nutrients in healthy and withered trees in the forests of Marivan and Sarvabad county in Kurdistan province. For this purpose, Garan (Marivan) with declining trees were selected as unhealthy site, whi...
متن کاملEdge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling
In 1974, Kundu [4] has shown that triangulated (or maximal) simple toroidal graphs have three edge-disjoint spanning trees. We extend this result by showing that a triangulated graph on an orientable surface of genus g has at least three edge-disjoint spanning trees and so we can partition the edges of graphs of genus g into three forests plus a set of at most 6g − 3 edges.
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملEvaluation of the morphological Characteristics of broadleaf and needle leaf old trees for Use in Reforestation of forests in Ilam Province
Old trees as the most important genetic reserves of the country have great importance and value in various aspects of ecology, forest restoration management, ecotourism and even history. In this research, after identification of the old trees in the forests of Ilam province, their morphological characteristics including DBH, trunk height, total height, crown length, min & max crown diameter, cr...
متن کاملThe Relationship between European yellow mistletoe (Loranthus europaeus Jacq.) and habitat factors and structure in Zagros forests (Case study: Ghalajeh forests, Kermanshah province)
The semi-parasitic European yellow mistletoe (Loranthus europaeus Jacq.) is one of the harmful and damaging factors to the Zagros forests. This study to analyze the causes of infected trees by European yellow mistletoe was conducted in the Ghalajeh forests in Kermanshah province. To carry out this study, completely infected trees were examined by using the tree-to-tree sampling method. Required...
متن کاملLeap Zagreb indices of trees and unicyclic graphs
By d(v|G) and d_2(v|G) are denoted the number of first and second neighborsof the vertex v of the graph G. The first, second, and third leap Zagreb indicesof G are defined asLM_1(G) = sum_{v in V(G)} d_2(v|G)^2, LM_2(G) = sum_{uv in E(G)} d_2(u|G) d_2(v|G),and LM_3(G) = sum_{v in V(G)} d(v|G) d_2(v|G), respectively. In this paper, we generalizethe results of Naji et al. [Commun. Combin. Optim. ...
متن کامل